
Ru Complex

Complex name	Tris(4,4'-diphenyl-2,2'-bipyridinato) ruthenium(II) dihexafluorophosphate
CAS No.	123335-77-9
Abbreviation	$[Ru(dpbpy)_3](PF_6)_2$
Molecular formula/weight	C ₆₆ H ₄₈ F ₁₂ RuN ₆ P ₂ 1316.15
Form	Powder
'	

Structural formula

This is a cationic, homoleptic complex of Ruthenium(II). Unlike the Ir(III) complexes discussed earlier, Ru(II) in this context has a +2 charge, which is balanced by two PF_6^- counterions.

The 4,4'-diphenyl-2,2'-bipyridine (dpbpy) ligand extends the π -conjugation compared to the parent 2,2'-bipyridine (bpy). This significantly alters the electronic properties, leading to a red-shift in absorption and emission.

Key Properties:

Luminescence: It is a strong red-emitting luminophore. The emission is from a Metal-to-Ligand Charge Transfer (MLCT) excited state, where an electron is promoted from the ruthenium metal center to the π^* orbital of the diphenylbipyridine ligand.

Long-Lived Excited State: Like other Ru(II) polypyridyl complexes, it has a long-lived triplet excited state (microsecond to nanosecond range), which is crucial for its applications.

Electrochemical Activity: It undergoes reversible Ru(II)/Ru(III) oxidation, making it useful in electrochemistry.

Its primary applications are in research, including:

Electrochemiluminescence (ECL): It is an extremely efficient and stable ECL emitter, widely used in commercial clinical immunoassay analyzers and biosensors.

Organic Light-Emitting Diodes (OLEDs) as a phosphorescent dopant.

Dye-Sensitized Solar Cells (DSSCs) as a sensitizer.

Photoredox Catalysis as a photocatalyst.

Luminescent Sensors and Probes.

Complex name	Tris(4,7-diphenyl-1,10-phenantrolinato) ruthenium(Ⅱ) dihexafluorophosphate
CAS No.	65186-19-0
Abbreviation	[Ru(dpphen) ₃](PF ₆) ₂
Molecular formula/weight	C ₇₂ H ₄₂ F ₁₂ RuN ₆ P ₂ 1382.17
Form	Powder

$$\left(\mathsf{PF}_{6} \right)_{2}$$

Cationic, homoleptic complex of Ruthenium(II). The +2 charge on the complex is balanced by two PF_6^- counterions.

The 4,7-diphenyl-1,10-phenanthroline (dpp or bathophenanthroline) ligand is a highly conjugated and hydrophobic system. The phenyl rings extend the π -system and create a rigid, sterically protected environment around the ruthenium center.

Key Properties:

Strong Red Luminescence: It is one of the most intensely luminescent Ru(II) complexes, emitting in the orange-red to red region (around 600-620 nm). The extended conjugation of the dpp ligand lowers the energy of the ligand-centered π^* orbital, resulting in a lower-energy Metal-to-Ligand Charge Transfer (MLCT) excited state compared to Ru(bpy)₃²⁺.

Long-Lived Excited State: It possesses a long-lived triplet MLCT excited state, which is essential for its applications in sensing and light-emitting devices.

High Lipophilicity: The phenyl substituents make the complex very hydrophobic, which can be advantageous for incorporating it into polymers or membranes.

Its primary applications are in research and technology, including:

Oxygen Sensing: This is a flagship application. The long-lived luminescence of Ru(dpp)₃²⁺ is efficiently quenched by molecular oxygen. E xploited in optical oxygen sensors for biomedical, environmental, and industrial monitoring.

Electrochemiluminescence (ECL): It is an extremely efficient and stable ECL emitter, widely used in analytical chemistry and clinical diagnostics.

Organic Light-Emitting Diodes (OLEDs) as a red phosphorescent dopant.

Dye-Sensitized Solar Cells (DSSCs) as a sensitizer.

Luminescent Labels in bioassays

Complex name	Tris(2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolinato) ruthenium($\rm II$) dihexafluorophosphate
CAS No.	157081-88-8
Abbreviation	Ru(bathocuproine)₃(PF ₆)₂
Molecular formula/weight	C72H60F12RuN6P2 1400.31
Form	Powder

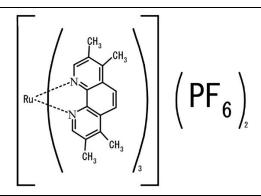
$$\begin{bmatrix} H_3C & & \\ & & \\ & & \\ & & \\ & & \\ \end{bmatrix}$$

$$\begin{pmatrix} PF_6 \end{pmatrix}_2$$

This is the hexafluorophosphate salt of the $[Ru(bcp)_3]^{2+}$ cation.

The ligand is bathocuproine (bcp), which is 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline. The methyl groups at the 2 and 9 positions create significant steric hindrance, forcing the three bulky ligands into a distorted, propeller-like arrangement around the ruthenium center.

The PF₆⁻ counterion is non-coordinating and, crucially, makes the complex much safer to handle than the corresponding shock-sensitive perchlorate salt.


Key Property: This complex is a red-emitting phosphorescent compound. The extended π -system of the diphenylphenanthroline ligand leads to a low-energy Metal-to-Ligand Charge Transfer (MLCT) excited state, resulting in red emission. The steric hindrance can influence the emission efficiency and excited-state lifetime.

Its primary applications are in research:

Electrochemiluminescence (ECL) studies

As a dopant in Light-Emitting Diodes (OLEDs) and Light-Emitting Electrochemical Cells (LEECs). Fundamental photophysical studies of sterically constrained ruthenium complexes.

Complex name	Tris (3,4,7,8-tetramethyl-1,10-phenantrolinato) ruthenium ($\rm II$) dihexafluorophosphate
CAS No.	65186-18-9
Abbreviation	[Ru(tmphen) ₃] (PF6 ₎₂
Molecular formula/weight	C ₄₈ H ₄₈ F ₁₂ RuN ₆ P ₂ 1099.95
Form	Powder

This is a cationic, homoleptic complex of Ruthenium(II). The +2 charge is balanced by two PF_6^- counterions.

The 3,4,7,8-tetramethyl-1,10-phenanthroline (tm phen) ligand is a sterically hindered and electronrich variant of 1,10-phenanthroline. The methyl groups donate electron density and create a protected environment around the metal center.

Key Properties:

Red-Emitting Luminophore: It is a strong red-emitting complex. The methyl substituents cause a slight red-shift in emission compared to the unsubstituted Ru(phen)₃²⁺ complex, due to their electron-donating nature which raises the energy of the metal d-orbitals, lowering the MLCT energy gap.

Hydrophobicity & Solubility: The methyl groups make the complex more soluble in organic solvents and can be used to incorporate it into hydrophobic matrices.

Oxygen Sensing: Like other long-lived Ru(II) complexes, its phosphorescence can be quenched by oxygen, making it useful in optical oxygen sensing applications.

Its primary applications are in research, including:

Oxygen Sensors: Particularly in hydrophobic polymer films.

Electrochemiluminescence (ECL): As a stable emitter.

Light-Emitting Devices (OLEDs/LEECs): As a red phosphorescent dopant.

Fundamental Photophysical Studies: To understand the impact of alkyl substitution on the properties of polypyridyl complexes.

Complex name	Tris(4,4'-dimethyl-2,2'-bipyridinato) ruthenium($\rm II$) dihexafluorophosphate
CAS No.	78746-15-9.
Abbreviation	Ru(dmbpy)₃(PF ₆)₂
Molecular formula/weight	C36H36F12RuN6P2 943.72
Form	Powder

Cationic, homoleptic complex of Ruthenium(II). The +2 charge is balanced by two PF_6^- counterions. The 4,4'-dimethyl-2,2'-bipyridine (dmbpy) ligand features electron-donating methyl groups. This electronic modification subtly tunes the properties of the complex compared to the parent $Ru(bpy)_3^{2+}$.

Key Properties:

Orange-Red Luminescence: It is a strong emitter in the orange-red region. The electron-donating methyl groups cause a slight blue-shift (higher energy) in its emission compared to Ru(bpy)₃²⁺. This is because the methyl groups raise the energy of the π^* orbital on the ligand, increasing the energy gap for the Metal-to-Ligand Charge Transfer (MLCT) transition.

More Positive Oxidation Potential: The electron-donating methyl groups make the ruthenium center slightly more difficult to oxidize $(Ru^{2+}/Ru^{3+} \text{ couple is more positive})$ than in $Ru(bpy)_3^{2+}$. Hydrophobicity: The methyl groups increase the complex's solubility in organic solvents. Its primary applications mirror those of $Ru(bpy)_3^{2+}$ but are chosen when its specific redox potential or emission energy is required:

Electrochemiluminescence (ECL): A very common and efficient ECL emitter.

Photoredox Catalysis: Used as a photocatalyst, often in dual catalytic systems.

Dye-Sensitized Solar Cells (DSSCs): As a sensitizer.

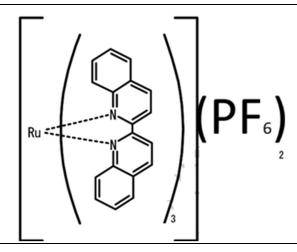
Fundamental Research: As a model compound for studying the effects of electron-donating substituents on photophysical and electrochemical properties.

Complex name	Tris(4,4'-dimethyl-2,2'-bipyridinato)ruthenium(II) diperchlorate
CAS No.	78746-16-0
Abbreviation	Ru(dmbpy)₃(ClO₄)₂
Molecular formula/weight	C ₃₆ H ₃₆ Cl₂RuN ₆ O ₈ 852.69
Form	Powder

This is the perchlorate salt of the $[Ru(dmb)_3]^{2+}$ cation.

The ligand is 4,4'-dimethyl-2,2'-bipyridine (dmbpy), whose electron-donating methyl groups cause a slight blue-shift in emission and a more positive oxidation potential compared to the parent Ru(bpy)₃²⁺ complex.

This compound is a perchlorate salt. Metal complexes with organic ligands and perchlorate (ClO_4^-) counterions are generally considered shock-sensitive and potentially explosive, especially when dry. For this reason, the hexafluorophosphate (PF_6^-) salt (CAS # 78746-15-9) is the preferred and much safer form for laboratory use.


Key Property: The [Ru(dmb)₃]²+ cation is a strong orange-red emitting luminophore with a longlived triplet Metal-to-Ligand Charge Transfer (³MLCT) excited state.

Its primary applications (for which the safer PF_6^- salt is strongly recommended) are in research: Electrochemiluminescence (ECL)

Photoredox Catalysis

Fundamental Photophysical and Electrochemical Studies

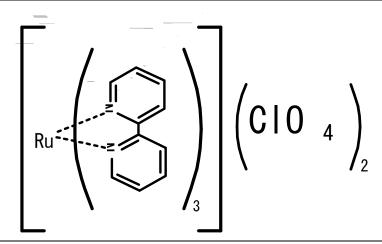
Complex name	Tris(2,2' -biquinolinato) ruthenium(II) ihexafluorophosphate
CAS No.	84649-52-7
Abbreviation	$[Ru(bqn)_3](PF_6)_2$
Molecular formula/weight	C54H48F12RuN6P2 1172.02
Form	PowderStructural formula
1	

Cationic, homoleptic complex of Ruthenium(II). The +2 charge is balanced by two PF₆⁻ counterions.

The 2,2'-biquinoline (biq) ligand is a larger, more extended, and more π -delocalized analog of 2,2'-bipyridine (bpy). This expanded structure significantly lowers the energy of the ligand's π * orbital.

Key Properties:

Near–Infrared (NIR) Luminescence: $Ru(biq)_3^{2+}$ is renowned for its emission in the deep red to near–infrared (NIR) region. This is a direct result of the low–energy $\pi*$ orbital of the biq ligand, which leads to a very low–energy Metal–to–Ligand Charge Transfer (MLCT) excited state. Its emission is among the lowest in energy for simple Ru(II) polypyridyl complexes. Electrochemical Properties: It exhibits a relatively easy–to–oxidize Ru(II/III) couple due to the strong π -acceptor character of the biq ligands.


Its primary applications are in specialized research areas, including:

Spectroscopic Probes: Its NIR emission is useful in systems where visible light emission would be interfering or absorbed.

Electrochemiluminescence (ECL): Used as an ECL emitter, particularly in studies focusing on the red/NIR part of the spectrum.

Fundamental Photophysical Studies: It serves as a benchmark complex for studying low-energy excited states and electron transfer processes in transition metal complexes.

Complex name	Tris(2,2' -bipyridinato) ruthenium(${ m I\hspace{1em}I}$) diperchlorate
CAS No.	65009-85-4
Abbreviation	$[Ru(bpy)_3](CIO_4)_2$
Molecular formula/weight	C30H24Cl2RuN6O8 768.53
Form	Powder
Structural formula	

This is the perchlorate salt of the most famous and foundational ruthenium polypyridyl complex, [Ru(bpy)₃]²⁺.

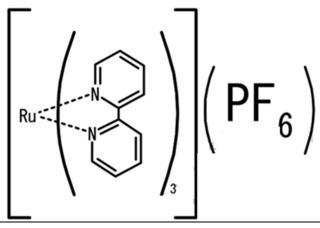
The perchlorate (ClO4-) anion is a weakly coordinating ion, which means it does not interfere with the photophysical and electrochemical properties of the Ru(bpy)₃²⁺ cation.

⚠ CRITICAL SAFETY WARNING:

Perchlorate salts of metal complexes with organic ligands are potentially explosive. They are considered shock-sensitive and can be hazardous, especially when dry. For this reason, the hexafluorophosphate (PF₆⁻) salt of Ru(bpy)₃²⁺ (CAS # 60804-75-1) is much more commonly used in modern research due to its superior stability and safety.

Key Property: The [Ru(bpy)₃]²⁺ cation is a benchmark complex in inorganic photophysics and electrochemistry. It is famous for its:

Intense Orange-Red Luminescence: Emitting from a long-lived, triplet Metal-to-Ligand Charge Transfer (MLCT) excited state.


Chemical Stability: The complex is very stable and robust.

Reversible Electrochemistry: Exhibiting a well-defined Ru(II)/Ru(III) oxidation wave.

Strong Electrochemiluminescence (ECL): It is the prototypical and most widely studied ECL compound.

Its primary applications the safer PF₆⁻ salt: Electrochemiluminescence (ECL) Sensors: The basis for many commercial clinical diagnostic systems, Dye-Sensitized Solar Cells (DSSCs) as a standard sensitizer, Photoredox Catalysis as a pioneering photocatalyst, Fundamental Research as a model compound for studying electron and energy transfer processes

Complex name	Tris(2,2' -bipyridinato) ruthenium(${ m II}$) dihexafluorophosphate
CAS No.	60804-75-1
Abbreviation	$[Ru(bpy)_3](PF_6)_2$
Molecular formula/weight	C30H24F12RuN6P2 859.56
Form	Powder

This is the hexafluorophosphate salt of the iconic [Ru(bpy)₃]²⁺ cation.

The PF₆⁻ anion is preferred over others (like perchlorate, CIO_4 ⁻) due to its chemical stability, non-coordinating nature, and low shock-sensitivity, making it safe to handle and store.

Key Properties:

Intense Orange Photoluminescence: It exhibits strong emission from a long-lived triplet Metal-to-Ligand Charge Transfer (³MLCT) excited state.

Excellent Redox Stability: It undergoes a reversible one–electron oxidation (Ru²+/Ru³+) and reduction (on the bipyridine ligands).

Strong Electrochemiluminescence (ECL): It produces highly efficient light emission upon application of an electrical potential, which is the basis for many analytical applications. Its applications are vast and foundational:

Electrochemiluminescence (ECL) Immunoassays: The basis for numerous commercial clinical diagnostic systems (e.g., Roche Elecsys, Abbott ARCHITECT).

Photoredox Catalysis: One of the pioneering catalysts that helped launch the field. Dye-Sensitized Solar Cells (DSSCs): A standard sensitizer and reference compound. Fundamental Research: Serves as a model system for studying electron transfer, energy transfer, and excited-state dynamics.

Complex name	Tris(2,9-dimethyl-4,7-diphenyl-1,10-phenanthrolinato) ruthenium(II) diperchlorate
CAS No.	157081-89-9
Abbreviation	[Ru(dmdpphen) ₃](ClO ₄) ₂
Molecular formula/weight	C78H60Cl2RuN6O8 1381.34
Form	Powder

$$\begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

This is the perchlorate salt of the ruthenium(II) complex with the ligand bathocuproine (bcp), which is 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline. The sterically hindered methyl groups force the complex into a distorted, chiral geometry, similar to its iridium analog.

Key Property: This complex is a red-emitting luminophore. Its photophysical properties are influenced by the extended, rigid, and sterically hindered bathocuproine ligand.

⚠ CRITICAL SAFETY WARNING:

As with the previous example, this is a perchlorate salt. Salts of perchlorate with organic ligands are potentially explosive and are considered shock-sensitive, especially when dry. For this reason, the hexafluorophosphate (PF_6^-) salt is strongly preferred for safety in laboratory handling and storage.

Its primary applications are in research:

Electrochemiluminescence (ECL) studies.

As a dopant in Light-Emitting Diodes (OLEDs/LEECs).

Fundamental photophysical studies of sterically constrained ruthenium complexes